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Optimization of random searches on defective lattice networks
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We study the general problem of how to search efficiently for targets randomly located on defective lattice
networks—i.e., regular lattices which have some fraction of its nodes randomly removed. We consider large
but finite triangular lattices and assume for the search dynamics that the walker chooses steps lengths €; from
the power-law distribution P(€)) ~€;", with the exponent u regulating the strategy of the search process. At
each step €}, the searcher moves in straight lines and constantly looks within a detection radius of vision r,, for
the targets along the way. If there is contact with a defect, the movement stops and a new step length is chosen.
Hence, the presence of defects decreases the efficiency of the overall process. We study numerically how three
different aspects of the lattice influence the optimization of the search efficiency: (i) the type of boundary
conditions, (ii) the concentration of targets and defects, and (iii) the category or class of search—destructive,
nondestructive, or regenerative. Motivated by the results, we develop a type of mean-field model for the
problem and obtain an analytical approximation for the search efficiency function. Finally we discuss, in the
context of searches, how defective lattices compare with perfect lattices and with continuous environments.
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I. INTRODUCTION

How does one optimize the search in continuous disor-
dered media, where the location of the target objects are not
known a priori? This problem of finding, in the most effi-
cient way, randomly distributed target sites has attracted in-
terest in several areas of research [1,2]: e.g., (i) the modeling
of foraging processes [3-13] by diverse animal species in
theoretical ecology, (ii) oil recovery from mature reservoirs
in geology [14], (iii) studies of dynamics at the extinction
edge in scenarios of low availability of energetic resources
[15], and (iv) automated computer searches of registers in
high-capacity databases [16] in information technology. In
the majority of such examples, the random searches are per-
formed in an Euclidean environment. Nevertheless, in digital
spaces and in concrete physical lattice networks (see below),
the search takes place in discrete topologies.

Lattice models have yielded important results for the un-
derstanding of complex systems phenomena: e.g., neural
processing [17-19] and dynamics of computer [20,21] and
social [22] networks [23,24]. Because of their fundamental
and practical relevance, it is natural to extend the above ini-
tial question to searches in discrete landscapes. In this con-
text many studies [23,25,26] have reconfirmed the hypoth-
esis that the topological features of the lattices, especially
site connectivity, do indeed affect the transport of informa-
tion.

In particular, regarding the above latter aspect, works in
the literature [27] address the properties of a lattice when
defects (breakdowns via removal of bonds or nodes) are in-
troduced, e.g., the instability of the network with the destruc-
tion of “hubs,” the routing determination when the lattice
connectivity is time dependent as in peer-to-peer (P2P) net-
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works, etc. However, the influence of such random “dilution”
on the efficiency of random searches has not yet been thor-
ough analyzed. Potentially, this study could be useful to
solve a variety of problems, such as how to find stretches of
information in a computer storage device which is partially
damaged or how to randomly look for a gas station in an
unfamiliar city during rush hour, when the streets are
jammed.

In general, networks can be classified into two large
classes of systems: (i) large-world networks and (ii) small-
world networks. Large-scale networks are locally connected
and rich in clusters, with only short-range links, basically
between first-neighbor sites. In such cases, the distribution of
link sizes is a narrow Gaussian, truncated close to the origin,
giving rise to a linear increase of the mean distance between
two arbitrary sites (lattice diameter) with the total number of
sites [25,28]. These networks have been associated with low
efficiency of transport properties [25] and typically can be
modeled by two-dimensional (2D) regular lattices with de-
fects. In contrast, small-world networks are globally con-
nected and highly efficient for transport. They possess
power-law link distance distributions. Furthermore, their to-
pologies reveal cluster formation associated with the large
number of local links [25]. The lattice diameter grows sub-
linearly (logarithmically) [25,28] with the number of sites
due to the existence of rare long-range links—the ultralong
links act as shortcuts that reduce the number of links neces-
sary across which the information must propagate (an ex-
ample being the World-Wide Web [29]).

While discussions on the optimization of high-
performance  small-world networks are  numerous
[23,26,30,31], studies dealing with the efficiency of large-
world networks are far less common [32]. Nevertheless, op-
timizing the search in inefficient networks, including large-
world networks, is an equally important problem. For
instance, it relates to situations of very high cost for trans-
forming the link configuration from a large-world one to

©2008 The American Physical Society


http://dx.doi.org/10.1103/PhysRevE.77.041101

SANTOS et al.

small-world one [33]. Moreover, a really large number of
concrete situations of interest [34] are in their essence large-
world networks, characterized by structures that have only
first-neighbor links between the lattices nodes and which
cannot be physically modified. A nice example is the traffic
system in small- and medium-size towns [35]. Finally, even
if the topology of a lattice is of small-world kind, yet some
of its features may be better associated with a large-world
topology. Indeed, a great variety of biological networks are
typically scale free [36]. But in some instances, like in gene
networks [37], many of the links are so weakly related—with
respect to a particular functionality—that they can be ne-
glected without important modification for the dynamical re-
sponse of that functionality, effectively leading to a large-
world problem.

Therefore, as a first step toward understanding the random
search features in defective large-world networks, here we
adapt a search model, already successfully applied to con-
tinuous spaces [9], to the case of discrete fragmented envi-
ronments, created by removing a certain number of nodes of
originally regular triangular lattices. We consider then a ran-
dom walk with step lengths chosen from an asymptotic Lévy
distribution P({;)~ 6;“. At each step j the walker moves in
straight lines along the directions allowed by the lattice with
defects, constantly looking for target sites along the way.
Different values of u set the different strategies of the
search. We should observe that for the particular case of
defect-free regular lattices, this type of analysis has recently
[32] led to some interesting results, revealing how distinct
strategies should be chosen so as to optimize the random
search depending on the various features of the regular lat-
tice, such as topology and type of boundary conditions.

The article is organized as follows. In Sec. II we introduce
aspects of defective lattices and the search model procedure.
Results and discussion of the numerical simulations are pre-
sented in Sec. III, where an analytical model is also devel-
oped. Final remarks and conclusion are drawn in Sec. IV.

II. MODEL

A search process is fully characterized once one estab-
lishes the following: (i) the features of the search space and
(ii) the strategy adopted to find the targets. We next discuss
these two aspects of the model.

A. Lattice properties

We begin by analyzing the search environment and its
properties—mobility and connectivity. We assume a two-
dimensional lattice, with lattice constant s=1. Each node
connects to its nearest neighbors in a triangular topology (see
Fig. 1). We consider three types of boundary conditions: pe-
riodic (PBC), helical (HBC), and wall (WBC), respectively,
Figs. 1(a), 1(b), and 1(c). The importance of boundary effects
in the present context arises due to the fat-tailed step distri-
bution and to the finite size of the lattices. Actually, the com-
bination of both factors might enhance the probability of a
given search walk to reach the lattice boundaries, depending
on the set of parameters considered (see discussion on spe-
cific cases below). Note also that the BC choice is not rel-
evant for Brownian walks in lattices of sizes much larger
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FIG. 1. Illustration of the triangular lattice and its boundary
conditions: (a) periodic; (b) helical; and (c) not specular wall.

than the first and second momenta of the step distribution,
but it turns to be definitively important, even in very large
discrete lattices, when the distribution considered presents
huge (diverging) momenta.

Regarding specific aspects of the BCs studied in this
work, we first observe that the PBC leads to a torus lattice. In
this case, horizontal paths [Fig. 1(a), left] are closed circles,
whereas diagonal paths [Fig. 1(a), right] form solenoidlike
curves. Indeed, note that the trajectory ABCDE... in the fig-
ure is not closed until all the nodes are visited. Moreover, the
HBC differs from the PBC because the left is connected to
the corresponding right border shifted by one node [Fig.
1(b), left]. A similar relation holds for the top and bottom
boundaries [Fig. 1(b), right]. This shifting generates a
twisted torus lattice. Therefore, the horizontal paths create a
solenoid that is closed after half of the nodes are visited. The
diagonal paths also create a solenoid, which, analogously to
the PBC case, closes only after visiting all nodes. Finally, in
the WBC any node along the boundary acts like a hard wall,
but not specularly. Thus, any path hitting a border node be-
comes truncated and a new path, having a direction which is
randomly chosen, must begin.

To create defects, diluting the network, we randomly
eliminate a certain fraction of nodes from an initially regular
lattice. If we denote by 7 the initial number of nodes in a
perfect lattice, the fragmentation coefficient is defined by y
=ngy/ng, where n,; is the total number of nodes removed.
Examples are given in Fig. 2. Note that y=1 implies an
empty space—total dilution, complete destruction of the lat-
tice. The mean number of connections per node, kf, reduces
linearly as y grows according to k;=(1- x)k, with k=6. Note
that k=6 is the number of first neighbors in a triangular
lattice without defects (xy=0).

Relevant for the present random search problem is to un-
derstand how the increase of defects—i.e., variation of
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FIG. 2. Examples of a perfect (y=0) and two defective lattices.
Here ny=56.

x—alters the mobility and connectivity in the lattice. We
address this question by assuming a lattice with ny=4 X 10°
and study two useful quantities.

First, we assume a random walk, whose step lengths ¢;
are given by the distribution P(€;) ~¢;* with u=1.1, which
represents nearly ballistic steps. We also impose a maximum
value for ¢; (an upper cutoff) of €,,,,=\ng=2X 10°. We use
PBC, but due to the chosen cutoff, the exact boundary con-
ditions are not very important here. A full run stops after
traveling a total distance L=ny=4 X 10° along the lattice.
Then, we consider the initial perfect lattice divided into 100
regions (quadrants), all having the same number of nodes.
Next, for a given value of x we implement N=100 different
realizations and for each perform the mentioned random
walk. Finally, we compute o(y), which gives the fraction of
quadrants visited by the walker at least once in a run (aver-
aged over such N=100 runs). The results, displayed in Fig.
3(a), show that only for low fragmentation (y<<0.1) does the
coefficient o remain close to unity, so that all the quadrants
are still available to the walker and, on average, the whole
lattice can be accessed starting from any arbitrary site. Above
a critical value for the number of defects one has =0, in-
dicating that the lattice is critically disconnected and that
leaving the initial quadrant becomes a rare event. It is inter-
esting to note that such a critical fragmentation coefficient
for the mobility measure, y,.=0.5, coincides with the trian-
gular lattice percolation threshold [38]. So, as it should be,
the fraction of visited quadrants by a random walker is di-
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FIG. 3. (a) Fraction of quadrants visited at least once by a ran-
dom walker and (b) coefficient of cluster formation (which mea-
sures the average number of first neighbors of the nodes), as func-
tions of the fragmentation coefficient y.
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rectly connected to how close the defective lattice is to its
percolation limit. In fact, observe a rapid reduction of the
mobility (0—0) in the range 0.2< y<0.5. However, as we
are going to discuss in Sec. IIT A, for Lévy or any other
random strategy to effectively improve the efficiency of a
search, the concentration of defects in a regular lattice cannot
be too high. Thus, in our analysis we will be relatively away
from the threshold of the associate percolation problem.

A second interesting function is the coefficient of cluster
formation, C(x), which we adapt from Ref. [25]. It is defined
as the following. Take an arbitrary node s, with k, closest
neighbors. Then, at most ky(k,—1)/2 connections could be
formed between them (when all the neighbors of s are also
connected to each other). We assume that, if connected, two
nodes are joined by only one bound. Then, C; represents the
proportion of these possible connections which indeed exists.
C is just the average of Cy over s. For the above lattice
parameters and again for 100 realizations for each y, we
show in Fig. 3(b) the numerically calculated C(y). We
clearly see that the defects lead to a rapid break up of the
clusters.

B. Random search rules

For the random search process, we assume that the target
sites are distributed randomly at the nodes of the lattice,
giving a total number of n,=ny—n,; We classify the target
sites as follows: destructive (i.e., perishable), which become
irreversibly unavailable for future visits once found by the
searcher; nondestructive (i.e., nonperishable), which can be
revisited an arbitrary number of times; and finally, an inter-
mediate case of regenerative targets; i.e., once found, they
become again accessible after a finite recovery time. To as-
sure stationarity also in the destructive case [9,15,32], yet
keeping the expected results for a destructive process [39], a
new site is randomly placed every time a target site is found
and destroyed.

The searchers perform random walks, whose step lengths
¢; are distributed according to (with £,> N\, for N\, a lower
cutoff)

P(€) ~ €+, (1)

Sums of such steps converge to the long-distance regime of
the Lévy-stable distribution [40-44], with Lévy index a=u
—1, for 1 <u=3. The Brownian behavior corresponds to the
case w=3[45,46]. In the interval 1 <u <3, the step lengths
€ j do not have a characteristic scale, lower moments diverge,
and the distribution acquires self-affine properties—i.e.,
P(y€;)~y*#P({)). The exponent u determines the features
of the search walk: almost rectilinear or ballistic (u— 1),
Brownian (u=3), and superdiffusive (1 <u<3).

We consider the following rules for the search model.

(A) The orientation in each step j is randomly chosen
from one of the six possible directions along the lattice.

(B) The step lengths €; are taken from the distribution (1),
where an upper cutoff €,,,, is imposed to the values of the
{s.

! (C) While traveling the distance €;, the searcher con-
stantly looks for target sites within the closest r,, neighbors of
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m Sites inspected visually

actual searcher position

FIG. 4. Schematic representation of the visual inspection rule
(C). Only sites at most a distance r, along the lattice directions are
directly visible to the searcher. Here r,=3.

its present location (see Fig. 4). So r, is a “vision” radius of
detection. If a target site is detected, the searcher moves
straightforwardly to it and the step is truncated.

(D) If a defect exists along the step j direction (within the
distance ¢;) and no target sites are found before reaching it,
the step is truncated at the node just before such defect.

(E) If truncation events (C) and (D) do not occur, then the
searcher proceeds until traversing the distance €;.

(F) After any of the cases (C), (D), or (E), the process
resumes in (A). The walk ends when the searcher traverses
an established total distance L.

We characterize the performance of the random search
process through the efficiency function 7(u) = Q/L. Here, Q
is the total number of target sites found after traveling the
distance L. We numerically calculate the quantities of inter-
est by averaging over N=100 simulation runs. Finally, since
we want to explicitly see the influence of the boundary con-
ditions, unless otherwise mentioned we always assume the
very large value of €,,,,=10">> \n,.

III. RESULTS AND DISCUSSION

In the studied model of random search in lattices with
defects, there are many features determining the process ef-
ficiency. For clarity, we present our discussions according to
different aspects influencing it.

A. Truncation of the Lévy steps

During the walk, the searcher uses the distribution (1) as
the metric associated with the step length. At any step j, €;
shorter than A is rejected. Note that for a random search on
a perfect lattice, one should have \y=r,, since any target site
located at a distance shorter than r, is directly accessed ac-
cording to rule (C) above. On the other hand, statistically,
long steps are truncated on average at a distance A, associ-
ated with the free mean path, which depends on the radius of
vision, r,; the number of target sites, n,; and the number of
defects, n,. The ratio N/ gives then an effective dimension-
less characteristic size of the dynamical process. Observe
that it decreases with the increase of r,, n,, and n, since then
the probability of truncation by finding either a target site or

PHYSICAL REVIEW E 77, 041101 (2008)

1T ‘ T T 1T ‘ UL ‘ UL ‘ LI |
1.2 [ (a) truncated jumps
s660000eccsscsee

J -

0.8

v(d)

e
)

0.4

A= = L

0 02 04 06 08
)

—

(b) mean step

o
e

1(8)
=

=

—_
T

~
N

10-1\\\\\\\\\\\\\\\\\\\\\\\\
0 02 04 06 08 1

)

FIG. 5. (a) Fraction »(8) of truncated steps. (b) Average step
length 1(6). The dashed line represents the random walk on a frag-
mented lattice (for which 8= y=n,/ng). For the random searches on
a perfect lattice (for which 8=n,/n), r, is equal to 1 (circles), 3
(crosses), and 5 (triangles). The other parameters are specified in
the main text.

a defect is enhanced. In particular, if 7, is of the order of the
mean distance \; between target sites, one has N/Ay= 1, in-
dicating that it is not necessary to look for a target site since
one of them can always be found nearby. Thus, each step is
truncated. An analogous situation occurs when the lattice is
relatively well populated by defects (x>0.2), with a small
mean distance between them (A;=~\,), implying N/\y= 1.
The relations between A and A, and the system parameters
are

ny+ 2r§n, ng

=— 5 (2)

N = .
ng+ 2r5nt

A
ng+2r,n. Ao
We leave to Sec. III D the appropriate justification for these
expressions.

Next, we shall illustrate how the step lengths of a searcher
are truncated on a perfect lattice with target sites and on a
defective lattice with no target sites. In the first case the
walker effectively performs a random search and in the sec-
ond it is just a random walker [subjected to the defect-
induced truncations, rule (D)]. For the former (latter) situa-
tion we define 8=n,/ny (6=x=n,/ng). As concrete examples,
we set the parameters ny=4 X 10%, PBC, L=2X 107, u=1.1,
and consider nondestructive searches for three different val-
ues of r,: namely, 1, 3, and 5. We also impose the upper
cutoff €,,,,=\n, for the step lengths, once here we shall
avoid the effects of loops in the lattice. Observe that this
cutoff is not relevant when 6=1/ \e“'no, because then on aver-
age there is at least one target site or defect in each lattice
line, so necessarily every step larger than the lattice size will
be truncated.

In Fig. 5 we display two different quantities obtained
from the above described simulations. The first is the average
fraction of truncated steps in a run, v, as a function of &, Fig.

5(a). The second is the actual average step length {(5), shown
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in Fig. 5(b). Both the pure random walk and the random
search present a fairly global qualitative agreement (for &
being ny/n in the former and n,/n, in the latter). Note that
even for small values of & in the two cases, the average step
length is very short compared to the lattice side Vn,, Fig.
5(b). This is not a surprise because already for §=0.1, about
80% of the steps are truncated as seen in Fig. 5(a). The only

difference of behavior is observed for /() when & is close to
1. But this is straightforward to understand. In the pure ran-
dom walk, the limit §— 1 means that there is no more lattice.
So for 6=1 the great majority of the nodes are isolated,
rendering the walker to stay trapped at its present node and

hence [=0. Nevertheless, in the random search, 6 around the
unity means that the lattice is saturated with targets, so the
steps always truncate after one lattice parameter s=1.

Based on the previous discussions, we point out the fol-
lowing. When N/Ny= 1, regardless the u, the search space
only allows steps of lengths around N =\ and the distribu-
tion of effective steps has mean value A, for destructive and
nondestructive searches. Therefore, the limit N/Ay=1 is
trivial since the effective walk is certainly Brownian and the
efficiency 7(w) remains invariant with respect to the search
strategy. In order to avoid this simple regime, in our study
next we adjust r, <\ and restrict the concentration of target
sites and defects to no more than 10%. So, relatively below
the percolation threshold y.=0.5 seen in Sec. II A.

B. Boundary conditions and the average
truncated step length 1

For finite lattices, the exact nature of the boundary condi-
tions can play an important role in the efficiency outcomes of
a random search. But this is true only when the search tra-
Jectories reach the lattice limits with a certain frequency,
which is the case when typically N/Xy>Vng/(10\,) (hereaf-
ter called regime I). Here we study the different influence of
three types of boundary conditions in the mean-free-path re-
gime I: periodic (PBC) [Fig. 1(a)], helical (HBC) [Fig. 1(b)],
and wall (WBC) [Fig. 1(c)]. We consider nondestructive
search, u=1.1, r,=1, np=4X 10°, and nd=103. The change
in \/\, is obtained by varying n, from 1 to 4 X 10°. Finally,
as the total distance to end each simulation run, we set L
=2 X 10°\.

The PBC makes the lattice a torus, allowing looplike cir-
cular trajectories. When confined in one of these loops, with-
out target sites or defects to stop the loop, the searcher nec-
essarily traverses the whole step distance €; with no
truncation. In such cases, arbitrarily long steps (up to €.y
are allowed. As a consequence, we expect the search effi-
ciency to decrease as u is lowered from 2 to 1+e€ (e very
small, but not 0 because normalization), in both destructive
and nondestructive cases (see Secs. IIl C and III D). A re-
lated behavior is already seen in plots of the mean step
length 1 as a function of N/ N\o. Indeed, for the nondestructive
case and PBC, we display in Fig. 6 (circles) the very fast
increasing of [ for large values of /X,

The HBC transforms the lattice into a twisted torus with
solenoidal trajectories. So loops do not occur, and hence such
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FIG. 6. Mean step length I(\/\,) for nondestructive search. The
variation in /A is obtained by changing only the number of target

sites n,. Notice the rapid increasing of I for PBC. This is not the
case for HBC and WBC.

topology allows a more efficient search than the PBC case.
However, note that the search paths form a kind of coil
spring and, thus, even very long steps may inspect only a
relatively small part of the lattice. Moreover, a very long
horizontal step can cover at most half the lattice. As a con-
sequence, we can have a considerable number of steps ¢;
truncated to values larger than A\, but still much shorter than

the upper cutoff limit €,,,,. Thus, the variation of I with \/X,
is relatively slow, with no abrupt changes as for the PBC.
Indeed, compare the two cases in Fig. 6.

Lastly, the WBC does not generate loops and produce
search paths which are much more ergodic than those for
PBC and HBC [indeed, compare Fig. 1(c) with Figs. 1(a) and
1(b)]. Therefore, such paths results in truncations for step
lengths of the order of . This is displayed in Fig. 6, where
for logo[N/\y]>2.7, although yet not very pronounced, we

start to see some difference between the mean step length
of the HBC and of the WBC.

In summary, the initially chosen €; step lengths can be
truncated either because the walker finds a target or it hits a
defect. For regime I, the different boundary conditions set
different values for the maximum truncated distance d,
which effectively can be traveled during a single step. They
are listed in the first row of Table I.

C. Target density regimes and the efficiency function 7(u)

The shape of the efficiency curves are strongly influenced
by the truncation of Lévy steps. We therefore classify the
results of search optimization into four regimes. As already
mentioned, regime I occurs when the boundary conditions

TABLE I. For different N/\y regimes and boundary conditions,
the effective larger distances d that the walker can move in a single
step due to the steps €; truncation mechanisms.

Regime PBC HBC WBC
I d={ ax d>\ d=N\
I d=\ d=N\ d=N\
I No=d= 10\, No=d= 10\, Nos=d= 10\,
v d”}\o dz)\o dz)\o
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(a) Regime—I: destructive

nwma)

nwma@a)

FIG. 7. The normalized efficiency 7(w)/ 7(3) as function of w
for (a) destructive and (b) nondestructive searches. The parameters
values (main text) characterize regime I. For the PBC case (circles)
7(;— 1) — 0 due to the existence of loops. Even without develop-
ing loops, the lower scanning power of the HBC (squares) also
leads 7 to decrease for smaller u. The best overall efficiency is
presented by the WBC (triangles).

are determinant: namely, A/ )\0>\an0/ (10Ny). In this case,
truncations of the step lengths £;=\ (with the exception of
the WBC) are not frequent. On the otlgr hand, an interme-
diate situation for which 10 <<A/\y<+ng/ (10\) (regime II)
is characterized by a high truncation rate, making the borders
of the lattice rarely accessible to the searcher at a single step.
Thus, the efficiency function 7(w) is almost independent of
the particular boundary condition. As in regime III we as-
sume 1 <A/\y<<10, close to the saturation, but still demand-
ing from the searcher a small number of steps (of order of
few lattice parameter s) to find a target site. Finally, regime
IV is the complete saturated case—all steps are truncated due
to near-maximum site occupancy by targets. The effective
larger distance d for all regimes are listed in Table I.

In regime I, where steps truncations are not frequent, each
type of boundary condition has a peculiar influence for both
destructive and nondestructive efficiency function. For this
regime, in Fig. 7 we show 7(u) [normalized by the Brown-
ian efficiency 7(3)] considering the parameters r,=1, ny=4
X 10%, n,=10%, n;=10°, N\/\y=1331.33 [from Eq. (2)], and
L=10°\. Usually, a destructive search favors ballistic long-
step strategies for there is no reason to remain close to a
visited site. This is fairly the case for the WBC, for which 7
increases around 10% from u=3 to its maximum value at
wn=1.5. However, the existence of loops for the PBC and a
“weaker ergodicity” of the HBC (see the discussion in the
Sec. I B) lead to low efficiency if 1<u<2. So one finds
n—0 for u—1 in these two cases. On the other hand,
Brownian strategies (u=3) give the same results for all
boundary conditions. Furthermore, generally 7(u=3) is
lower than 7(w=2) since the searcher tends to keep close to
the last visited and destructed site, with the nearest target site
available only after a large number of small steps in the case
of low and intermediate concentrations of target sites. These
observations are summarized in Fig. 7(a), which displays
n(u) for a destructive search. Note that for the WBC w,,,
=~ 1.4, but the efficiency is almost the same for smaller val-
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FIG. 8. As in Fig. 7, but for regime II and parameters given in
the main text. Note that the curves for distinct boundary conditions
overlap, indicating that in regime II the difference between PBC
(circles), HBC (triangle), and WBC (squares) is not very important.

ues of u. In the case of HBC and PBC they are, respectively,
Mopr=1.8 and p,,,~2.0.

For the nondestructive search, we observe that u,,,~2 in
any of the boundary conditions, Fig. 7(b). This strategy rep-
resents a compromise between the importance of long versus
short steps, as it can be advantageous to stay near a previ-
ously visited site, always visitable again, but also to move
ballistically to look for distant sites. In spite of this compro-
mise, the loops in the PBC reduce drastically the efficiency
of superdiffusive strategies with 1 <u <2, observed directly
in the plot. This results in 7(u) —0 when u— 1. Note that
the peak at u,,, for the WBC efficiency is not so pronounced
when compared with the whole curve, as seen for the other
two boundary conditions by confronting 7(u,,,) with 7 for
small w’s. We also mention that although the local dynamics
of destructive and nondestructive searches are rather distinct,
in this regime I their curves 7(u) turn out to be very similar.
Finally, we stress that if we plot the 7(w) of Fig. 7 without
any normalization, as expected we find that the WBC always
presents the best efficiency for all w’s.

For regime II, we plot the efficiency function in Fig. 8
using the parameters values r,=1, ny=4 X 10°, n,=8 X 10°,
ng= 104, N/Ng=153.61, and L= 10°\. In the destructive case,
the distribution of defects and sites implies in steps truncated
around N and an optimal efficiency exponent a,,,— 1 (i,
~1.3), corresponding to a nearly ballistic regime of long
steps, seen in Fig. 8(a). In contrast, in the nondestructive
case, Fig. 8(b), we again observe the optimal strategy for u
around 2 (in fact, w,,~1.9). But now, in the interval 1
<wp=2, we no longer find a vanishing efficiency for the
PBC and HCB cases. Actually, in this regime the difference
between the boundary conditions is negligible.

In regime III (1 <A/N\;<<10), one has u,,— 1 in both
destructive and nondestructive cases. In this case, practically
the only situations where the walker will not find a target site
in a single step is if by choosing a step length from the
probability distribution (1), it sorts a value €;<<\. The way to
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FIG. 9. The scaled efficiency 7(u)/ 7(3) versus u, for the re-
generative search and parameters as in the main text, corresponding
to (a) regime I and (b) regime II. The recovering times are 7=5
X 1073\ (circles), 7=25X 1073\ (squares), and 7=125X 1073\
(triangles).

avoid it is simply making w small (close to 1), so diminish-
ing the probability of too short step lengths €;. This case is
treated analytically in the next section. Obviously, in
regime-IV (N/\g=1) all steps are truncated, leading to the
very trivial case of a constant 7(u).

Finally, we consider the regenerative search; i.e., once
found, the target site becomes unavailable during a certain 7,
being “regenerated” and again available for the searcher after
this recovering time. Of course, 7=0 and 7— o correspond
to the nondestructive and destructive limits, respectively. For
the walker always moving with a constant unitary velocity, 7
can be parametrized by . We consider in Fig. 9 three ex-
amples 7=5X 1073\, 7=25 X 1073\, and 7=125 X 1073\. We
also assume PBC and the parameters values r,=1, no=4
X 10%, n,=10%, n,=10%, N/\y=1331.3, and L=10°A—i.e., re-
gime I [Fig. 9(a)]—and r,=1, ny=4Xx10%, n,=8 X 10°, n,
=10% N/N\y=153.6, and L=103X, thus belonging to regime II
[Fig. 9(b)]. For the PBC and regime I, the destructive and
nondestructive search efficiencies shown in Fig. 7 are quali-
tatively similar. It explains why in Fig. 9(a) we see no im-
portant difference in 7(w) for the three values for 7. How-
ever, for regime II in Fig. 9(b), as 7 increases, we observe a
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transition of the 7 X w shape, from a nondestructive to a
destructive behavior (compare to Fig. 8).

We present a summary of the optimal values for w, for all
situations discussed in this section, in Table II.

D. Analytical treatment of the lattice problem

The random search efficiency defined in Sec. II B can be
written as

__P
TN

where N, is the mean number of steps taken between two
sites and (€) is the mean step length of a single step. Thus,
their product gives the distance traveled between two succes-
sively found sites. Here note that by a site we mean any
element in the lattice that truncates the walker steps—i.e.,
either a target or a defect. To take into account the difference
between them, we introduce the quantity P, which can be
interpreted as the average probability of a sought object to be
contained in a given found site. For a search with no defects,
one just can set P=1 (a site always has a searched object),
but in the present case a different choice is in order, as we
discuss below. This is the essence of our mean-field-like ap-
proximation. We treat targets sites and defects alike, so we
can use many of previous results in the literature [9,47,48].
However, their different contributions to 7 are computed in
terms of their relative densities in the lattice. This simple
picture makes explicitly how the defects contribute nega-
tively to the efficiency.

Using rigorous calculations and scale analysis, it has been

shown that [47,48]

A (1-p)/T

(2] .
Ao

7 (3)

For I'=1 we have the destructive and for I'=2 the nonde-
structive cases. An arbitrary value 1 <I'<2 interpolates be-
tween these two extreme cases, corresponding to a regenera-
tive search, where the target sites recover after a certain time
7 (how I is associated to such 7 is discussed, for instance, in
Ref. [48]).

The high probability of truncation of large steps (£;>N\,
for A a kind of mean free path discussed in Sec. III A) allows
one to write (€) as the usual first moment of the distribution

TABLE II. The optimal exponents wu=pu,,, that lead to search optimization for the different situations

discussed.
Regime Boundary Destructive Nondestructive Regenerative
Condition Search Search Search
I PBC Hopi=2.0 Hopr=2.0 Hopr=2.0
I HBC Hopi=1.8 Hopi=2.0 1.8 < ) <2.0
I WBC Hopr=1.4 Hopr=2.0 1.5 <p,,<2.0
II Any Hopr=1.3 Popr=1.9 1.0<p,,,<2.0
111 Any Mopr— 1.0 Mopr— 1.0 Hopr— 1.0
v Any All equivalent All equivalent All equivalent
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P(€) in Eq. (1), but with an appropriate approximation for
the corresponding integral, namely [9] (see also Ref. [46]),

A o0
f Orge + J N
No \

J Hde
Ao

The limits Ay and \ of Eq. (5) relate the truncation of the
steps to the properties of the search space. In particular, in
environments where truncations are determined only by the
density of target sites, p,, and by the detection abilities (given
by r,), one has

(6) = (5)

SN (6)

)\0 =T, A =
2ryp,

On the other hand, in environments with defects only, then
Np=s=1 and A=\, Our aim next is to define A and A for an
arbitrary defective lattice, so as to assign Eq. (5) to the av-
erage step length of a walk through a regular background
space filled both with target sites and defects.

Such a definition must distinguish and reflect the trunca-
tion due exclusively to the finding of target sites in the ab-
sence of defects (i.e., N\=\, when p,=0) versus truncation
due exclusively to the presence of defects in the absence of
target sites (A=A, if p,=0). Thus, from such limit cases, the
above results for A, and from the fact that p,=0=N;—
and p,=0=\,— ¢, we should expect

A A 1
lim (—"):@, lim(—0> . )

Ng—° A )\t N N )\d
Since in our mean-field-like approximation we consider that
the partial densities of targets and defects (which go with the

inverse of the corresponding free mean paths) are additive,

then a simple expression satisfying Eq. (7) can be written as
N T 1
Doy — (8)
NN N

Knowledge of either N\ or A, thus determines the other pa-

rameter in Eq. (8). Furthermore, we have that p~ 1/\ where

P=py+py, SO

N ©)

where \,=ny/(2r,n,) and \;=ny/n,. By solving Egs. (8) and
(9), we obtain

Lt Ay

= . 10
1+)\t/)\d ( )

0
Observe that 1 =\y=r, arises as a consequence of the con-
ditions in Eq. (7). It is also convenient to express N and A\ as
functions of the “control” parameters r,, ny, n,, and n, or [49]
2
ng+2rpn n
e = —2— (11)

ng+2ryn,

No =

ng+2r,n,

Finally, we discuss the appropriate definition of P, the quan-
tity which gives the relative contributions of target and de-
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RICOL .

FIG. 10. 7(u), normalized by the maximum efficiency 7,,,, for
the nondestructive search and parameters as in the main text. The
analytic model and the numerical simulations (circles) do not fall
off from their peaks at the same rates. However, from a blowup of
the latter (inset), it becomes clear that both cases have a very simi-
lar shape behavior.

fects to the efficiency. Actually, in terms of the step trunca-
tion dynamics, the target sites and defects play, qualitatively
speaking, similar roles. It is seen, for instance, in the results
presented in Sec. III A. But of course, targets and defects are
different in two very relevant aspects. The obvious one is
that if a step halts due to a defect, contrary when it does due
to a target site, the walker “gains” nothing and such trunca-
tion contributes negatively for the efficiency (locomotion
without finding the object). The second is that since a step is
truncated only if the defect is blocking the way (i.e., no
lateral defects can stops the movement, opposite to the case
of target sites), then effectively the defects have a lower trun-
cation power. Therefore, we can think about the defect as a
“fake” target site, which is also harder to find. So, with this
picture in mind, we can write P=[1+(fp,)/p,]"". The term f
weights the relative truncation power of defects and target
sites. It should depend on r,, the detection radius of
defects—which is simply the lattice parameter s—and the
connectively of the lattice. Based on a straightforward geo-
metric reasoning, one realizes that f~s/((k—1)r,), with k
=6 for our triangular lattice.

Considering all these results in the efficiency formula, Eq.
(3), we end up with a type of “mean-field” model to describe
our defective lattice random search problem [50].

The qualitative agreement between the analytical 7 and
the numerical simulation is shown in Fig. 10, for a nonde-
structive search and regime II, where the differences between
the boundary conditions are not relevant. We consider the
parameters values r,=5, ny=2.5X107, n,=5x%10°, n,;=5
X 103, N/Ny=98.04, and L=10°\. Thus, d is around \ (see
regime II in Table I) and correspond to the same truncation
imposed on the analytical expression for (£), Eq. (5). We see
that the normalized curves are very similar, having a same
shape behavior and presenting the maximum at the same
value of w. But they do not fit to a same relative scale; the
analytic model decays from the peak faster than the numeri-
cal simulation. To a great extent the differences in Fig. 10
can be understood from the following. Although our approxi-
mations properly handle the way defects truncate the walk,
there is an extra factor not included in the model. In fact, the
defects introduce a certain number of “holes” in the lattice
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FIG. 11. Analytic normalized efficiency 7](#)/%,;;’ as a func-
tion of u, for the nondestructive (solid) and destructive (dashed)
curves in regime 1. The parameters are given in the main text. (a) A
lattice with the PBC, for which A — o in Eq. (5). (b) A “truncated”
lattice, for which \ in Eq. (5) is taken from its actual numerical
value, given by Eq. (11).

(see Fig. 2). So a pure Euclidian metric (at any scale and
direction), true for continuous spaces and perfect lattices and
implicitly assumed in the analytic expressions, does not com-
pletely hold in defective lattices. This inhomogeneity, cor-
rectly captured in the simulations, makes the efficiency less
sensitive to changes in the step lengths distribution (con-
trolled by ). Probably, it can be fixed by the inclusion of a
necessary numerical factor, associated with the lattice topol-
ogy and defects density, multiplying N/\, in Eq. (4). We
should mention that presently we are studying such problem
and the results will be reported in the due course.

Another aspect that the model can reproduce well, illus-
trating a key role played by the boundary conditions allied to
the target densities, is the particular behavior of the PBC in
regime I, for which when u— 1 the efficiency n(u) goes to
zero in both destructive and nondestructive searches. But for
this, some care is necessary to properly define N in Eq. (5).
For example, let us consider the parameters r,=1, ny=2.5
X 107, n,=10%, and n, =103, so that the N\/\y=8334 is a rela-
tively large value. However, since here we want to explicitly
see the influence of the loops, we just allow arbitrarily long
step lengths €; i.e., no upper cutoff is assumed. Hence, we
set, in Eq. (5), A— . In this case, the curves in Fig. 11(a),
destructive and nondestructive searches, show an abruptly
vanishing efficiency for w<<2. Of course, this sharp transi-
tion is an artifact of assuming an infinite \. By considering a
very large but finite N\, we would also observe a rapid decay,
but with no divergence for d7(u)/du. These results are in
agreement with Fig. 7. On the other hand, in Fig. 11(b) we
use exactly the same parameters, but take the actual value of
N in Eq. (5), which for such reason we call “truncated” lat-
tice. In this case, we see that the results do not agree with
those observed for the PBC lattice. They are similar to what
should be expected for a continuous environment search
[9.47,48].

20 (a) Regime—III: destructive
g 15
E o0 el
= \\\*~
E St ___ D ) _h::_‘:: -----
0 L L L
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24 ‘ ‘ ‘
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FIG. 12. Analytic 7(u)/ 7(3) X u for regime III, parameters as
in the main text, and (a) destructive and (b) nondestructive cases.
The curves correspond to r,=6 (short-dashed curve), r,=12 (long-
dashed curve), and r,=18 (solid curve).

As a last case, we consider regime III, whose qualitative
behavior, already discussed in Sec. III C, is simple to predict
but demanding to simulate. Indeed, since the density of tar-
get or defects is high, the step lengths truncations do occur
quite frequently. So, to calculate any relevant quantity, a lot
of different realizations are necessary for satisfactory aver-
ages. Hence, in this situation the analytical model is very
appropriate. For the plots of 7(w)/ 7(3) in Fig. 12, we as-
sume ny=4 X 10°, n,=6 X 103, and n,=10* and three differ-
ent values for r,: namely, 6, 12, and 18. They correspond,
respectively, to A/Ny=9.05, N/Ng=2.30, and A/Ny=1.03.
Note that u,,— 1, indicating that the high truncation rate
favors always to choose long step lengths (see Sec. III C).
From the curves we also see that for increasing values of r,
(i.e., increasing of the detection power), the relative advan-
tage of a Lévy process (u<3) over a Brownian strategy
(u=3) diminishes, an intuitive but nonetheless important
fact for search optimization.

IV. REMARKS AND CONCLUSION

In the present exploratory contribution we have discussed
many aspects influencing the random search in defective lat-
tice networks, focusing on the triangular structure case. The
defects were created through random elimination of a frac-
tion y of the original nodes. We have studied the efficiency
function 7(u), obtaining the values of u=g,, that lead to
optimal strategies. We have found that the shapes of the ef-
ficiency curves 7(u) and the values of w,,, are strongly de-
pendent on the density of target sites and defects, the bound-
ary conditions, and the type of search process—i.e., whether
destructive, nondestructive, or regenerative. We can summa-
rize our main results as follows: (i) for any strategy effec-
tively to improve the random search efficiency, the number
of defects cannot be too high (see also below); (ii) for low
target concentrations, the specific boundary conditions are
very important in defining the behavior of 7(u); and (iii)
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n(u) for nondestructive and destructive searches present
some similarities at low densities of targets.

Next, final remarks are in order. As we have seen, a key
aspect in determining the dynamics of the search is related to
the frequency in which the steps lengths €; are truncated. It
takes place each time the walker finds a target site or hits a
defect. Considering their densities, parametrized by the ef-
fective mean free path \, Eq. (11), we have that for very
large \’s, low density of targets and defects (regime I), the
specific type of boundary conditions plays an important role
for smaller values of w. This, however, is not the case for
m>2, since then the average step lengths are smaller and
thus the walker does not reach the lattice boundary fre-
quently. Furthermore, for shorter A—i.e., regimes II and III
(regime 1V is trivial)—the boundary conditions are also not
relevant. Indeed, in these situations 7(u) for a same param-
eter set but different boundary conditions collapse to a single
behavior (see Fig. 8).

We can draw a parallel with the perfect lattice case: Ref-
erence [32] discussed one square and two triangular lattices
(differing by how much of the lattice nodes a single huge
step could visit), all with the PBC. The calculated efficiency
curves for such regular lattices showed that in general the
n(u)’s were higher for the more ergodic lattices (i.e., those
where the walker more easily could scan the search space).
For defective lattices, we see exactly the same behavior (e.g.,
Fig. 7). But the difference is that here it is the boundary
conditions which determine the performance of the scan
mechanisms.

Furthermore, regarding the shape of the curves, for re-
gimes I and II all the lattices in Ref. [32] present an effi-
ciency which is qualitatively similar to our cases of PBC and
HBC, both for destructive and nondestructive searches. The
exception is the RBC in regime I, because as already men-
tioned it always truncates the flight at the borders of the
lattice and therefore no looping can take place. For regime
IIT there are no simulations for comparison, but one also can
expect qualitative agreement.

An interesting aspect observed for regular as well as for
fragmented lattices in the cases of PBC and HBC is that
destructive and nondestructive searches present similarities
which are absent in a continuous space search. But of course,
this is true only in regime I. For the other regimes, lattices
and continuous spaces somewhat resemble each other, which
becomes evident if one can compare Figs. 8(a), 8(b), 9(b),
and 11(b) with the results in the Refs. [9,48].

We have also analyzed how the defects influence the
search efficiency. Intuitively speaking, defects should de-
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crease 7(w). Indeed, many steps are truncated due to their
presence. Such locomotion is just noise, spurious, increasing
the total distance traveled without finding extra target sites.
From the calculations in Sec. III A we have found that when
the defects density y is higher than 10%, the number of
truncated steps increases very rapidly. Hence, the particular
random search strategy (the chosen u) starts not to be very
important for the efficiency outcome. On the other hand, for
lower x’s, the dynamics of truncation due to defects and
target sites are very similar. Thus, we can think about a de-
fect as a target site, but with no target object in it. In this
case, the presence of defects is just like rescaling the target
sites density. From such reasoning—crucial for understand-
ing qualitatively the differences and similarities between
searches undertaken on regular lattices and defective
lattices—we have been able to develop an analytical model,
leading to good qualitative agreement with the numerical
simulations.

The above discussion relates to an important issue. What
exactly is the threshold for y such that above it random
search optimization may no longer be possible? This ques-
tion bears the relevant point of how robust is a given lattice
to defects regarding efficient searching, a problem that will
be the focus of a future contribution.

As the last observation we comment that very recent em-
pirical studies of animal locomotion [51] have uncovered an
apparent paradox concerning Lévy flights: why do certain
organisms not perform Lévy motion known to optimize the
foraging process? In the present study we have found (in the
context of lattices landscapes) that depending on different
factors, (i) the boundary conditions, (ii) the presence of de-
fects, (iii) the density of target sites, and (iv) the detection
power (here represented by the value of r,); the relative ad-
vantage of Lévy flights strategies is drastically diminished
compared to other strategies, such as ballistic or pure Brown-
ian motion. It indicates that the necessary conditions (see,
e.g., the discussion in Ref. [9]) for a Lévy random search
strategy to lead to the highest encounter rates may not be
fulfilled depending on the above (or other) environmental
factors—thus, a possible explanation for the above-posed
question.
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